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A new method to synthesize novel esters of Lasalocid acid 2–5 and of Monensin A, 7–9 (semi-synthetic
di- and tripodands) is described. These new compounds are characterized by spectroscopic and microbi-
ological methods.
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Typical podands have non-cyclic structures, in which several
polyether chains are linked to the same binding centre, which
can be N, P, Si or S atoms. Because of their specific properties, they
are the so-called open-chain analogues of crown ethers and crypt-
ands. Like these compounds, podands are able to form stable com-
plexes with monovalent cations.1 Due to this property, podands are
used as promising anion activators in organic reactions and as suit-
able ligands for solid–liquid phase transfer catalysis.1–5 The two
parameters that influence the ability of podand complex formation
with cations1 are the number of oxygen atoms and the varying
length of the polyoxaalkyl chains. Typical podands show relatively
low cation selectivity during complex formation as well as a lim-
ited capacity to recognize selectively chiral compounds.1,3–5

In the present study, we report the synthesis, spectroscopic and
microbiological characterization of several new derivatives of
Monensin A and Lasalocid acid, which can be defined as semi-
synthetic dipodands and tripodands. In these new compounds the
natural polyether ionophore moieties are connected by a hexamethyl-
ene linker or bound to a benzene-1,3,5-trimethylene species.

Lasalocid acid 1 and Monensin A 6 (Scheme 1) are carboxylic
polyether ionophores isolated from Streptomyces lasaliensis and
Streptomyces cinnamonensis, respectively. They are lipophilic che-
ll rights reserved.

.

lating agents of cations and are able to transport cations across
lipid membranes of cells.6 Monensin A exhibits significant
preference to form complexes with monovalent cations,7 such as
Li+, Na+, K+, Rb+, Ag+ and Tl+, whereas Lasalocid acid is able to form
complexes with mono- and bivalent metal cations,8 such as Na+,
Ag+, Ca2+ and Ba2+. Both Monensin and Lasalocid derivatives also
exhibit excellent enantiomer selectivity for chiral amines.9

Both Monensin A and Lasalocid acid are very sensitive to acidic
conditions and heating. For this reason we investigated mild
reaction conditions for their esterification. We found a reliable
strategy for the esterification of 1 and 6 based on direct alkylation
of the carboxylate ions using alkyl bromides [1,3,5-tris(bromo-
methyl)benzene or 1,6-dibromohexane] and 1,8-diazabicyclo-
[5.4.0]undec-7-ene (DBU) as the catalyst.10,11 The syntheses of
compounds 2–5 and 7–9 are shown in Scheme 1. Using this ester-
ification procedure, the thermally unstable carboxylic ionophores
yielded stable esters without any indication of decomposition such
as decarboxylation or other degradation processes. This esterifica-
tion reaction shows, however, a remarkable solvent dependence.
Among the solvents used (dichloromethane, chloroform, aceto-
nitrile and toluene) the highest yield of the respective ester was
obtained in toluene, probably because of the optimal solubility of
the reactants and products in this solvent.

All the products were purified easily by column chromato-
graphy on silica gel. The structures of the esters were determined
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Scheme 1. Synthesis of semi-synthetic dipodands 3, 4 and 8 and tripodands 5 and 9 from Lasalocid acid (1) and Monensin A (6). Reagents and conditions: (a) (1) (1.0 equiv),
DBU (1.2 equiv), 1,6-dibromohexane (6.0 equiv), toluene, 90 �C, 5 h, 66%; (b) (1) (3.0 equiv), DBU (3.6 equiv), (2) (1.0 equiv), toluene, 90 �C, 5 h, 60%; (c) (6) (3.0 equiv), DBU
(3.6 equiv), (2) (1.0 equiv), toluene, 90 �C, 5 h, 36%; (d) (1) (6.0 equiv), DBU (6.6 equiv), 1,3,5-tris(bromomethyl)benzene (1.0 equiv), toluene, 90 �C, 5 h, 68%; (e) (6)
(1.0 equiv), DBU (1.2 equiv), 1,6-dibromohexane (6.0 equiv), toluene, 90 �C, 5 h, 55%; (f) (6) (3.0 equiv), DBU (3.6 equiv), (7) (1.0 equiv), toluene, 90 �C, 5 h, 43%; (g) (1)
(3.0 equiv), DBU (3.6 equiv), (7) (1.0 equiv), toluene, 90 �C, 5 h, 40%; (h) (6) (6.0 equiv), DBU (6.6 equiv), 1,3,5-tris(bromomethyl)benzene (1.0 equiv), toluene, 90 �C, 5 h, 49%.

Table 1
Antimicrobial activity of Lasalocid acid (1) and Monensin A (6) and their derivatives: 3, 5, 8 and 9; diameter of the growth inhibition zone (GIZ) (mm) and minimum inhibitory
concentration (MIC) (lg/ml)14–16

Strain Growth inhibition zone (GIZ) (mm) and minimum inhibitory concentration (MIC) (lg/ml)

1 6 3 5 8 9

GIZ MIC GIZ MIC GIZ MIC GIZ MIC GIZ MIC GIZ MIC

S. aureus NCTC 4163 35 12.5 22 2 24 12.5 12 400 22 12.5 25 25
S. aureus ATCC 25923 29 12.5 22 1 25 12.5 — >400 22 6.25 22 25
S. aureus ATCC 6538 31 12.5 20 2 24 12.5 12 400 22 6.25 23 25
S. aureus ATCC 29213 30 12.5 18 1 25 12.5 12 400 21 6.25 22 25
S. epidermidis ATCC 12228 27 12.5 15 2 23 12.5 15 400 20 6.25 22 25
B. subtilis ATCC 6633 28 6.25 22 1 25 6.25 13 400 25 12.5 28 12.5
B. cereus ATCC 11778 28 6.25 18 2 28 6.25 11 400 22 6.25 22 25
E. hirae ATCC 10541 20 12.5 — 12.5 17 12.5 — >400 — 100 — 200
M. luteus ATCC 9341 26 12.5 12 4 22 12.5 14 400 16 50 15 100
M. luteus ATCC 10240 32 12.5 12 2 28 12.5 16 200 20 12.5 19 25

—: denotes lack of a growth inhibition zone.
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using elemental analysis and FT-IR, 1H and 13C NMR and ESI-MS
methods.12

In the 1H NMR spectra of tripodands 5 and 9, the most charac-
teristic signals were observed for the aromatic protons of the 1,3,5-
trimethylenebenzene moiety and for the protons assigned to
methylene benzyl group (C(10)H2) (Fig. 1). The signals of the aro-
matic protons occurred as singlets at 7.61 ppm and 7.33 ppm for
5 and 9, respectively. In the 1H NMR spectrum of 9, the signal for
the two protons of the CH2 group occurred as a singlet at
5.17 ppm, whereas in the spectrum of 5, this signal was observed
at 5.51 ppm as a doublet of doublets due to geminal (2J) spin–spin
coupling (Fig. 1). This kind of coupling indicates that both protons
are located in different electronic environments and a typical AB
spin–spin coupling structure is realized.13 The presence of the ester
groups in all the di- and tripodands was evident by FT-IR spectro-
scopy, since the m(C@O) vibrations of the ester group are one of the



Figure 1. 1H NMR spectra in the region of the most characteristic signals of: (a) 5, (b) 3, (c) 4, (d) 8, (e) 9.

Figure 2. FT-IR spectra in the m(C@O) stretching vibration regions of compounds
3–5 and 8–9.
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most characteristic bands in the infrared spectra (Fig. 2). In the
spectra of the Monensin and Lasalocid esters, these m(C@O) vibra-
tions were evident at about 1733 cm�1 and 1655 cm�1, respec-
tively. Additionally, in the FT-IR spectra of Lasalocid derivatives
2–5, a band assigned to the stretching vibrations of the keto group
C(13)@O at 1715 cm�1 was also observed.
Lasalocid acid (1), Monensin A (6) and their di- and tripodand
derivatives 2–5 and 7–9 were tested in vitro for their antibacterial
and antifungal activities using various micro-organisms such as
gram-positive bacteria, gram-negative rods and yeasts (Table
1).14,15

The antimicrobial properties of all the active compounds are
characterized by the minimum inhibitory concentration (MIC)
and the results obtained for the compounds studied are presented
in Table 1.14–16 Lasalocid acid (1) as well as Monensin A (6) exhib-
ited relatively high activity against gram-positive bacteria. Esters
2, 7 and 4 were inactive against all the micro-organisms tested.
Podands 8 and 9, obtained from Monensin A, show considerably
better activity against gram-positive bacteria than the correspond-
ing podands 3 and 5, obtained from Lasalocid acid. All the com-
pounds 1–9 tested were inactive against strains of Candida (C.
albicans and C. parapsilosis). Moreover, as expected, the cell walls
of gram-negative bacteria do not permit the penetration of hydro-
phobic molecules with high molecular weights and thus the micro-
organisms are not susceptible to Monensin A and Lasalocid acid as
well as their derivatives.



A. Huczyński et al. / Tetrahedron Letters 49 (2008) 5572–5575 5575
In this Letter, we have described an efficient method for
obtaining new semi-synthetic dipodands and tripodands from
naturally occurring carboxylic ionophores. We have provided
evidence that the new derivatives of Lasalocid and Monensin A
(3, 5, 8 and 9) show antibacterial activity against human patho-
genic bacteria.
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